主讲人:唐三一
时 间:2018年1月12日(周五)下午3点
地 点:理工北楼301
主 办:数学科学学院
淮安市传染病防控及预警重点实验室
生物数学研究中心
报告内容简介:Planar impacting predator-prey dynamical models with different functional response function have been proposed and analyzed, which could be applied to describe the integrated pest management and to address key questions arising from pest control. The existence and stability of boundary order-1 periodic solution have been investigated, and also the threshold conditions for occurring the transcritical bifurcation and stable switching related to the boundary order-1 periodic solution are obtained. Furthermore, the definition and properties including monotonicity and discontinuity of the Poincare map determined by the proposed impacting system are discussed, which can allow us to reveal the existence and global stability of order-1 periodic solution. The main results indicate that multiple discontinuous points of the Poincare map could induce the coexistence of multiple order-1 periodic solutions. Moreover, numerical analyses reveal the complex dynamics of the model including periodic adding and halving bifurcations, which could result in multiple active phases, among them the rapid spiking and quiescence phases can switch each other and consequently create complex bursting patterns. Main results reveal that it is beneficial to restore the stability and balance of the ecosystem for species with group defense by moderately reducing population densities and group defense capacity. However, the weak or strong pest control not only increases the amplitude of pest population, but also aggravates the extinction of natural enemy population, even though pesticides have no influence on natural enemies. In this talk, I would also like to introduce some recent results, main applications and challenges on this topic.
报告人简介:唐三一,陕西师范大学教授。2003年中国科学院数学所获得博士学位,2003年至2007年在英国Warwick大学从事基因调控网络识别、数据分析的交叉学科研究。2007年7月回到陕西师范大学工作,教授,博士生导师,现为数学与信息科学学院副院长。先后到英国、加拿大、美国、日本、德国、法国等国知名大学从事合作研究或作大会特邀报告,建立了广泛的国际合作关系。主要从事生物数学和生物信息学研究,提出了一系列重要的建模思想,发展了新的理论分析技巧、模型辨识和数值研究方法。发表SCI论文100多篇,被SCI杂志引用超过2000次。完成及主持5项数理、信息、医学等学部国家自然科学基金5项(4项面上和1项中美生物医学国际合作),参与1项国家自然科学基金重点项目。研究成果获陕西省自然科学二等奖1项(第一完成人)。三次应邀出席国际生物数学大会并作大会特邀报告,部分研究得到中国日报、加拿大环球邮报、Elesvier出版社等国内外媒体的广泛报道,在公共卫生领域产生了深远的社会影响。
(作者:朱守丽 审核:柏传志)
本文来源:淮师新闻网责任编辑:朱守丽
微博达人:
404 Not Found
404 Not Found
nginx/1.4.1
网友跟帖:共有条跟帖
匿名